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The focus of this paper is an optimal design of morphing aircraft wings employing a wing structure composed of an
internal layout of cables and struts. Cables are used to provide actuation and stiffness, and struts provide stiffness
without actuation. Topology optimization is used to place cables and struts in a bay or a section of the wing. Nonlinear
finite element analysis is used to capture the large deformations of the structure, and the optimization is achieved
using the Nondominated Sorting Genetic Algorithm II. The optimization procedure is illustrated using a morphing-
wing example. The effect of the upper limit on actuation forces is studied, and solutions are found with good
agreement between the desired and obtained deflections under actuation and aerodynamic loads. The implemented
parallelized optimization algorithm is successful in solving a computationally intense, multi-objective,
multiconstraint problem with a large number of discrete and continuous design variables in a reasonable amount

of time.
Nomenclature
Ay = cross-sectional area
by, by, by = strain displacement relationships
C = proportionality constant
dUu = update in displacement
E = Young’s modulus
F = internal forces
Fo = actuation forces
1 = least-squares error between deflection
under actuation and the desired
deflection under actuation and airloads
I = least-squares error between the

81> 82> 83, 84, 85
81allows 82allow> &3allow>

84allow> &5allow
i

deflection under airloads and the
original undeformed configuration
constraint sets 1, 2, 3,4, and 5
allowable limit on constraints 1, 2, 3,
4,and 5

varies from 1 to the number of nodes n

j = varies from 1 to the number of
elements

K = stiffness matrix

K, = tangent stiffness matrix

K., Ky, K = components of the tangent stiffness
matrix

Leabgy = final cable length

P = stress stiffness matrix

Leabyiia = initial cable length

. = final length

Iy = initial length
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number of controlled output points
(nodes) along the wing boundary
vector of nodal displacements

(1, v, Wy, Uy, V2, Wy)

internal forces

external forces

nodal deflections

applied actuation

total volume of active members
total volume of passive elements
total volume of all structural members
weighing factor (ranging between 0
and 1)

upper limit on the fraction of total
volume that may be composed of
active material

coordinates of output points when
subjected to cable actuation and
airloads

coordinates of the output points when
subjected to only airloads and no
actuation

desired deformed coordinates of the
output point

undeformed coordinates of the output
point

vector of nodal coordinates

(X1, Y15 215 X2, Y2, 22)

lower limit on the fraction of total
volume which must be composed of
passive material

half of the element length (/,/2)
starting point of Agq at iteration i

converged value of Ag at (i — 1)th
iteration

converged value of Ag at (i — 2)th
iteration

strain due to actuation

Green’s strain

stress

stress due to actuation

stress in element i
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Oyield.i = yield stress of the ith element (strut or
cable material)

I. Introduction

OME aircraft require high maneuverability to perform their

designated missions. An additional important goal in current
aircraft research is achieving optimal performance in different flight
conditions. Maneuverability typically involves (rapid) changes to the
wing cross section, and efficiency over a broad range of flight
conditions could also involve (slow) changes to the wing planform.
Shape change in conventional aircraft wings is accomplished by
using control surfaces connected with hinged and sliding joints for
yaw, pitch, and roll control. Geometric discontinuities on the wing
surface are generally undesirable, because they can disrupt the
airflow, thereby introducing undesired drag. By using a smoothly
morphing wing, a higher maximum lift coefficient and somewhat
lower drag may be achieved. The effectiveness of such a con-
tinuously morphing aircraft wing has been demonstrated by the
Smart Wing Program [1,2]. In this project, quantitative data were
generated to show that significant performance improvements can be
achieved by using hingeless alternatives to control surfaces such as
flaps and ailerons. The main goals of the current research are to
eliminate the geometric discontinuities and to achieve high maneu-
verability through continuous morphing of an aircraft wing.
Additionally, a smooth planform change is sought to maintain flight
efficiency over a range of airspeeds.

The key concept in the current work is to achieve continuous wing
morphing by using an optimized internal wing structure of struts and
tendons (or cables) [3]. Tendons are reeled in or shortened by
actuators, and struts provide rigidity against the aerodynamic loads.
Wing morphing is pursued in terms of a prescribed shape change,
which is modeled as deflection of points on the wing in specified
directions. A primary objective is to design an optimal cable-actuated
structure to achieve the desired shape change. This wing shape
change may be fairly large, depending on the problem at hand.

To fully realize this concept, a three-step design procedure is
required: the first step involves designing an optimal internal
structure that provides the desired wing deformation, the second step
involves identifying a means of actuation, and the third step involves
the development of an adequate skin that can morph with the internal
structure as well as withstand the aerodynamic loads. In this paper,
the first design step is addressed: that of obtaining an optimal cable
and strut layout in the wing.

The hyper-elliptic camber section (HECS) wing is used as a
sample problem in this research. The HECS wing is designed to
provide an improved lift-to-drag ratio over a wide range of angles of
attack compared with the planar elliptical baseline [4].

The tendon-actuated wing structure will be composed of a
combination of optimally placed tendons or cables and trusses.

a) Discretized wing structure

Figure 1a shows an example of a discretized HECS wing structure,
and Fig. 1b shows a sample optimal topology for one section or bay
of the wing. The far left end is constrained from motion, and the
desired deflections of the nodes at the right end have been specified.
The optimal topology is obtained by carrying out a topology opti-
mization on a ground structure (initial layout) consisting of randomly
placed truss, cable, and void elements. Voids indicate the absence of
truss or cable members at that particular location. They are used to
simplify the topology. The goal of topology optimization is to obtain
an optimal layout and number of trusses, cables, and voids in the final
topology, such that the desired wing morphing is achieved. The
example topology shown in Fig. 1b has five actuating cables (shown
in black). All elements are modeled as three-dimensional truss
elements. Stiff nondesign elements (shown in light gray in Fig. 1b)
are the elements that are not allowed to change during the optimi-
zation. These might be used, for example, to model a rib that ensures
that the cross-sectional shape of the wing does not change signi-
ficantly. In this research, each bay or section of the wing is designed
separately.

The organization of this paper is as follows. Section Il provides the
problem formulation. The parallelized optimization algorithm is
discussed in Sec. III. Nonlinear finite element analysis (FEA) and the
convergence of the Newton—Raphson (N-R) iterations are discussed
in Sec. IV. Finally, Sec. V describes the optimization results for the
HECS wing.

II. Problem Formulation
The general optimization problem is formulated as shown next:

Minimize f,, f, (D

Subject t0 g1_s =< gi_sailow @

where f, and f, are objectives, and g, g,, g3, &4, and g5 are
constraints.

This problem has multiple conflicting objectives. The morphing
wing must be flexible under actuation forces and stiff under
aerodynamic loads. Flexibility under actuation is quantitatively
expressed as the least-squares error between the deflection of the
output nodes under the combined effect of actuation and airloads and
the desired deflection [Eq. (3)]. Such a formulation ensures that the
wing deforms the required amount under actuation forces. Similarly,
stiffness under aerodynamic loads may be achieved by minimizing
the least-squares error between the deflection of the wing under
airloads and the unmorphed configuration of the wing [Eq. (4)]. This
ensures that the wing does not deform excessively under airloads
alone. The functions are given in Eqgs. (3) and (4). Equation (4) may
be taken as a rough indicator of aeroelastic issues, in that a stiffer
wing will be less susceptible to divergence and flutter:

mmmm— Cables

e Struts

Non-Design elements
Undeformed Configuration
Desired Configuration

b) Sample topology

Fig. 1 Tendon-actuated wing concept.
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1<
fl = ; Z \/(xdef actair,i -)Cde:s,i)2 + (ydef act air,i — ydes,i)z + (Zdef act air,i — Zdes.i)2 (3)
i=1

1
fZ = ; Z \/(xdef air, i xorig,i)z + (ydef air,i yorig,i)2 + (Zdef air,i Zorig.i)z (4)
i=1

These equations involve calculations of nodal deflections obtained
using nonlinear FEA. Cable actuation forces are modeled in the FEA
by shrinking the cable elements. Computational fluid dynamics was
used to predict the aerodynamic loads acting on the HECS wing [4].

The stresses in the cables and struts under defined limit-load cases
must be less than the yield stress of the material. In the current work,
the cables are assumed to be made of stainless steel 304 (yield stress
is 517 MPa) and struts of aluminum 7075 T6 (yield stress is
505 MPa). The equation quantitatively expressing the stress limit
requirement is given in Eq. (3):

R | 5)

O‘yicldﬂj

0j = Oyjela,j OF

In addition to these design requirements, an additional material
volume constraint is implemented to prevent the presence of an
excessive number of cables and struts in the wing. The volume
constraint on cables is used to reduce the number of actuators, and the
volume constraint on struts is used to control the weight of the
internal wing structure. Hence, Eqs. (6) and (7) must be satisfied:

X V. ctive
Vaclive = m Vtotal or g = W‘me] - (6)
y Vpassivc
v o<y = 0oLy 1 !
passive = 790 ol O 83 0.0lwatal @

The nonlinear finite element method has been used for solving for the
nodal deflections. Section IV discusses the nonlinear FEA in detail.
An additional check for stability of the design has been included in
the constraints by ensuring the positive definiteness of the stiffness
matrix K obtained from the nonlinear FEA. Thus, the following
equation must be valid:

eigenvalues (K) >0 or g, = eigenvalues (K) (8)
The last constraint [Eq. (9)] ensures that the cables shorten. Although
an elongating cable can provide stiffness to the wing topology, it
cannot be used as an actuator. Enforcing the constraint shown in
Eq. (9) ensures that only the cables that provide stiftness as well as
actuation are present in the topology:

lC‘dbﬁml - lcabiniliul <0 or gs= lcabinmul - lcabfmu] €
The unmorphing, or returning the wing to its original configuration,
is an additional important problem that must be addressed.
Unmorphing could potentially require additional antagonistic cables
or a spring mechanism. However, in this paper, the unmorphing
problem is not considered to reduce the number of design variables.
A spring mechanism for unmorphing has been implemented in a
related work [5].

This is a mixed-variable optimization problem. The discrete
variables are the type of each element in the ground structure: cable,
strut, or void. By allowing for the possibility of void elements,
topology optimization is achieved (i.e., the placements of cables,
struts, and voids in the wing body are optimized). Thus, each of the
discrete variables can either be 0, 1, or 2, depending on whether itis a
void, strut, or cable, respectively. The continuous variables are the
amount of actuation forces applied on the cables, resulting in the
shortening of cables.

Aerodynamic load data for the HECS wing problem were obtained
[4]. Prediction of aerodynamic loads associated with changes in the
morphing-wing configuration has been considered for the HECS
wing before [6]. In their work, Wiggins et al. [6] applied linear aero-
dynamic theory to the HECS wing configuration at certain morphed
positions to predict aerodynamic loads. However, in the current
analysis, the aerodynamic loads are assumed to be constant as the
wing morphs. This is done mainly to simplify the analysis during
optimization. In future work, a subroutine could be developed to
recalculate the aerodynamic loads for the next genetic algorithm
(GA) generation by using Schrenk’s approximation [7] (to obtain the
new spanwise load distribution) and a curve fit of two quadratics (to
obtain the new chordwise load distribution).

III. Solution: Topology Optimization Using
Parallelized GA (NSGA II)

The optimization solution method is the Nondominated Sorting
Genetic Algorithm (NSGA II) [8,9]. NSGA Il is a genetic algorithm
that can be used to solve a multi-objective, multiconstraint, mixed-
variable problem. The flow diagram is given in Fig. 2. NSGA Il is an
elitist strategy, and hence in every generation it sorts the set of
solutions according to their fitness (or objective values) and then

Combine parent and child population |«

L2
Sort to find different non-dominated fronts (F,, F,..)

v

Do until
L populati

parent
bn is filled

» Calculate crowding distance in F,

v

Include ith non-dominated front in parent population

v

Sort F; using crowded comparison operator

v

r
I
L

Do urg’/ max
generations

Choose best fronts/best chromosomes using crowded comparison operator

v

Use tournament selection based on crowded comparison operator,
Simulated Binary Crossover, Polynomial Mutation to create new population

Fig. 2 NSGA II flow diagram.
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Table 1 NSGA II parameters

Parameter Value
Crossover probability 0.7
Probability of real mutation 0.1
Probability of binary mutation 0.01
Crossover type Single point
Distribution index for crossover 100
Distribution index for mutation 400

selects the best solutions as parents for the next generation.
Nondominated Pareto fronts at each generation are found using
constraint domination conditions. The parameter values for NSGA 11
used in the current work are given in Table 1.

In the current algorithm, the fitness function evaluation using
nonlinear FEA is very time-consuming, because it involves an
iterative FEA procedure inside the GA design iterations. To reduce
computation time, a parallel version of NSGA II using a message-
passing interface (MPI) [10] has been developed to use multiple
nodes to carry out the function evaluations. A master—slave
algorithm developed previously [4] is employed in this work. The
master processor (Fig. 3) does all the GA operations. The fitness
and constraint calculations are performed by the slaves. An asyn-
chronous nonblocking communication using MPI_Irecv and
MPI_Waitany is employed to minimize idle time of the nodes. The
use of nonblocking communication provides dramatic improve-
ments in the performance of a message-passing algorithm by
reducing communication overhead. Once all the function evaluations
have been completed by the slaves, the NSGA II proceeds as shown
in Fig. 2. The slaves pass on the calculated function values to the
master, which then performs all the subsequent GA operations such
as selection, crossover, and mutation.

IV. Nonlinear FEA

Nonlinear finite element analysis has been used in the current work
to address the large deformation requirements of the problem. Only
geometric nonlinearity is considered; the material is assumed to be
linear. The total Lagrangian approach is used to solve this problem
[11.12].

The basic problem in nonlinear FEA is to find equilibrium
deflections and stresses of a body corresponding to the applied loads.
The loads acting in the present case are 1) aerodynamic loads,
2) forces due to actuation, and 3) nodal forces corresponding to
internal element stresses.

If R is the sum of the aerodynamic loads and forces due to
actuation and F is the vector of nodal point forces corresponding to
the internal element stresses in a particular wing configuration,
nonlinear FEA involves finding values of nodal deflections such that
Eq. (10) is satisfied:

F-R=0 (10)

Note that the simulation is performed for a particular case of wing
morphing under constant-aerodynamic-load conditions. During the
genetic algorithm, the actuation forces and nodal point forces
corresponding to internal element stresses change. An iterative full

Master Processor
« Population generation
+ Crossover and mutation
il Random number generation

N\

Slave Processor
Fitness and feasibility

Slave Processor
Fitness and feasibility

Slave Processor
Fitness and feasibility

Fig. 3 Master—slave implementation of NSGA 1I [3].

Newton—Raphson procedure is used for finding a state of force
equilibrium. As a starting point for the nonlinear FEA, an initial
guess for nodal displacements U is made. This value is updated until
Eq. (10) is satisfied. The flow diagram and the equations used for the
nonlinear FEA are given in Appendix A.

Although the Newton—Raphson method is a powerful tool for root
finding, due to its quadratic convergence, its success is dependent on
finding a good initial guess that is sufficiently close to the final
solution. An initial guess that is not close to the final solution can
prevent the nonlinear FEA from converging. With the presence of a
large number of nodal coordinates, as is the case in the current work,
this problem becomes more pronounced.

Various researchers [13—15] have discussed methods to improve
the convergence of nonlinear FEA. One scheme involves using the
deflection solution from the previous topology iteration as an initial
guess for the current nonlinear FEA [14]. A second scheme uses
Eq. (11) for obtaining a good starting point for the nodal deflections
U at the beginning of the N-R iterations. This equation uses
deflection values from previous two generations to obtain a starting
U value for the N-R iterations:

‘Aq’="1Ag +w(T'Ag—"2Aq) (an

In the present case, the use of Eq. (11) considerably improved the
convergence of the nonlinear FEA. The nonlinear FEA iterations
showed a 99.73% convergence with the scheme and a 78% conver-
gence without the scheme. Hence, Eq. (11) was used in the current
work to find the initial guess for the nonlinear FEA.

V. HECS Wing Results

As mentioned previously, the HECS wing has been used as an
example problem for this work. This wing in its morphed configu-
ration is shown in Fig. 4.

The initial ground structure of the HECS wing consists of 46
elements. Thus, the problem has 50 constraints: 46 uniaxial stress
constraints on the elements that ensure that the stresses in all the

Fig. 4 HECS wing (figure courtesy of NASA Langley Research
Center).

Fig. 5 HECS wing initial ground structure.
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Fig. 6 Results from case I.

nonvoid elements lie below their yield stresses, 2 volume constraints,
1 constraint that the stiffness matrix is positive definite, and 1 cable-
shortening constraint (the shortening of all the cables is considered in
a single constraint). The cable volume is constrained to lie below
20% of the total possible volume, and the strut volume is constrained
to lie below 50% of the total possible volume. Note that the element
cross-sectional areas are not allowed to vary in the optimization
algorithm. Hence, the volume constraints limit the number of struts
and cables in the optimal topology.

To achieve the desired deflection, a high upper limit on the
allowable actuation force must be used. However, using a high upper
limit on the allowable actuation force can result in numerical
convergence issues. The use of a high actuation-force limit permits
cable actuation forces to be an order of magnitude higher than the
nodal aerodynamic loads, thereby making the convergence of the
nonlinear FEA difficult. This is because Eq. (10) must be satisfied for
the iterative nonlinear FEA to converge to a solution. As mentioned
in the nonlinear FEA section, using an initial guess for nodal

Table 2 Fitness values: results 1, 2 and 3

Result no. fi fs
1 0.0140 0.00078
2 0.0141 0.00067
3 0.0142 0.00039

Table 3 Leading-edge nodal deflections: result 1

Leading Span change Thickness change Chord change
edge (as % of (as % of (as % of
original span)  original thickness) original chord)
Obtained 0.0005 1.524 0.033
Desired 0.005 120.95 0

mmmmm Cables

m Struts

Non-Design elements
Undeformed Configuration
Desired Configuration

Fig. 7 Resultant deflection: actuation-force multiplication factor of 75.

deflections in the Newton—Raphson method that is far from the
solution can prevent the convergence of nonlinear FEA. Although
the scheme suggested in Eq. (11) helps in the convergence of the
nonlinear FEA, an initial guess for the first GA generation must still
be made. In this work, a linear problem was solved to generate this
initial guess of nodal deflections. However, it was found that when
the forces were an order of magnitude apart, this guess still gave a
large number (greater than 5%) of nonconvergent nonlinear FEA
iterations. With a lower allowable actuation force, on the other hand,
the relative motion and shape of the deformed wing are close to those
desired, but the achieved absolute deflections are lower. Thus, to ease
convergence of nonlinear FEA as well as to achieve high deflections,
a low actuation-force range was first used in the GA to achieve an
optimal topology. A multiplication factor was then used on the cable
actuation forces of the optimal topology. Such a scheme resulted in
uniform displacement as well as ease of convergence. Two cases are
presented for the HECS wing. The first uses a low actuation-force
range, and the second uses a larger range. The results are presented in
the following subsections.
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Table 4 Fitness values: 75 x F

Actuation force fi 1>
Fo 0.0140 0.00078
175 % Fy 0.00757 0.00078

A. Case I: Low Actuation-Force Range

In case I, the actuation force in each of the cables is allowed to
vary between 0.2 and 200 Ib. Hence, each cable in the optimal
topology can be actuated by different amounts. The cable actuation
ranges are chosen such that they are close in magnitude to the
aerodynamic loads, thereby facilitating convergence of the nonlinear
finite element analysis. With a starting guess for the nodal
deflections as discussed in Sec. IV, a very small fraction of the
nonlinear FEA runs (0.025% out of 300,000 nonlinear FEA runs)
were found to be nonconvergent. This problem was solved on an
81-node (162 AMD Athlon MP 2200 CPUs) cluster with a main
memory of 2 GB for 18 nodes, and 1 GB for the other nodes. Each
GA generation in case I takes an average of 4.6 s to run. Hence, arun
of 500 generations with a population size of 300 takes about 40 min.
The initial ground structure for the HECS wing along with the output
points is shown in Fig. 5. The desired morphed configuration is
shown with the dotted line.

The Pareto front showing the tradeoff between the two objectives
is given in Fig. 6a along with three sample Pareto points (shown by
three points) on the curve. These three points are picked to study the
difference between the final topologies for different fitness values.
The three optimal topologies for the three sample points are shown in
Figs. 6b—6d. The dashed line shows the desired morphed
configuration. Table 2 gives the fitness values for the three results.

Result 1 (Fig. 6b) has the best fitness in terms of deflection under
actuation and airloads, and result 3 (Fig. 6d) has the best fitness
(stiffness) under airloads, although the topologies and the fitness
values are not very different from each other. This indicates that the
final solution set shows a set of results that are very close to each other
and not too diverse in nature. Result 1 was selected as the best result
for further analysis, because it has the maximum deflection under
actuation.

Result 1 consists of 5 cables, 12 struts, and 7 voids. The strains in
the cables are —4.4 x 107%, —1.3 x 107>, —4.4 x 107%,0, and 0. The
cable actuation forces are 0.7, 76.1, 195.7, 184.5, and 196 1b. Table 3
compares the desired and achieved nodal deflections of the node on
the leading edge. The achieved deflection is clearly lower than
desired. To achieve larger deflection, the cable actuation forces were
multiplied by various scaling factors ranging from 2 to 100. The best
results were achieved when using a scaling factor of 75. The stress
constraints were still satisfied with the actuation-force multiplication
factor of 75. The resultant deflection with a scaling factor of 75 is
shown in Fig. 7. The leading- and trailing-edge deflections are close
to their desired values. However, some local deformation of the
airfoil is observed.

0.0012

Table 5 Fitness values

Actuation force i I
Foq 0.0125 0.00081
4.8 x Fyy 0.00746 0.00081

Table 6 Leading-edge nodal deflections: case II

Leading Span change Thickness change ~ Chord change
edge (as % of (as % of (as % of
original span) original thickness)  original chord)
Obtained 0.0005 6.286 0.088
Desired 0.005 120.95 0

The increase in actuation force decreases the error between the
desired and achieved deformations (f,). Thus, the solution gets
closer to the desired solution. Hence, by scaling up the actuation
force, the deflection is increased, and the increase occurs in the
expected direction. Table 4 gives the objective function under
actuation and airloads (f;) and under airloads only (f5). It is found
that the error under actuation and airloads is much smaller in the
75 x actuation force case when compared with the error value in the
unscaled case.

B. Case II: High Actuation-Force Range

In case II, the upper limit of the cable actuation force is increased
by a factor of 10, which was chosen because the resultant number of
nonconvergent iterations from the nonlinear finite element analysis
was low (less than 5% of the total number of function evaluations).
Any further increase in the cable actuation force causes a significant
increase in the fraction of nonconvergent nonlinear FEA. Hence, in

s Cables

m— Struts

Non-Design elements
Undeformed Configuration
Desired Configuration

Fig. 9 Wing deformation: actuation-force scaling factor of 4.8.
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0 T T T T T T
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0.012 0.0122 0.0124 0.0126 0.0128 0.013 0.0132 0.0134

fl

a) Pareto front

m— Struts

Non-Design elements
Undeformed Configuration
Desired Configuration

b) Optimal topology

Fig. 8 Optimization results: case II.
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this case, an actuation-force range of 0.196 to 1960 1b is allowed. The
average time taken per GA generation is larger than in case I and is
equal to 10.7 s. Hence, for 500 generations, the problem runs for
1.5 h. The number of nonconvergent iterations from the nonlinear
FEA in case Il is higher than case I (2.7% as compared with 0.025%
of case I). As explained earlier, this is due to the large actuation-force
range. The resultant Pareto front and sample Pareto point optimal
topology are shown in Fig. 8. The final topology consists of 8 struts, 5
cables and 11 void elements. The cable actuation forces are 1811.7,
110.1, 1889.6, 1929.4, and 1896.5 1b. The fitness values are given in
the first row of Table 5.

Thus, the error under actuation with airloads is lower than the error
in case I. A comparison between the desired and achieved leading-
edge nodal deflections is given in Table 6. The deflections are lower
than desired. However, by using a scaled-up value of the cable
actuation forces, higher deflection is achieved. To study this, cable
actuation forces are scaled up by factors ranging from 2 to 5. The
maximum scaling factor is chosen as 5, because convergence of
nonlinear FEA is not achieved for higher scaling factors. The best
results are achieved when the cable actuation force is multiplied by a
factor of 4.8. The error in f; value decreases, as shown in the second
row of Table 5. The stress constraints are satisfied with the additional
actuation force. The deformation of the wing with a scaling factor of
4.8 (Fig. 9) is quite uniform.

From the results, good error reduction is achieved when using
higher actuation forces. However, most of the improvement is
obtained indirectly using a scaled actuation force rather than a direct
higher limit on actuation force in the optimization. It is also easiest to
achieve convergence of the nonlinear FEA iteration when using a
low actuation-force range. Stress constraints are satisfied in the
original, as well as the scaled, actuation-force topologies.

V1. Conclusions

This paper presents a methodology for the optimal design of
morphing aircraft wings. The problem formulation considers a multi-
objective, multiconstraint, and discrete continuous set of design
variables. A very computationally intensive problem is considered
and solved using NSGA II (parallelized as part of this work).
Nonlinear FEA was used to address the large deformation require-
ments of the problem.

Although parallelization reduces computation time and, in the
present case, is absolutely essential to obtain a solution at all, it
causes other time issues, such as queue wait time, queue time limit,
and processor communication time. Hence, the effort is justified only
if the time to run the serial program is unacceptable.

Convergence of nonlinear FEA was also found to be an issue.
Schemes have been suggested in the current work to speed up
convergence. However, the same scheme does not work for every
problem; suitable schemes are problem-specific. Hence, different
schemes have to be evaluated to find one that facilitates quick
convergence of the nonlinear FEA for the problem at hand.

Good agreement between the desired and achieved configurations
were obtained for the HECS wing when the cable actuation force was
scaled up. From the results, good error reduction is achieved using
high actuation forces. However, in case II, in which a higher
actuation-force range was allowed as part of the design, convergence
issues related to the nonlinear FEA were encountered. This comes
from the fact that with a high allowable actuation force, the actuation
forces become an order of magnitude higher than the aerodynamic
loads, making the convergence of nonlinear FEA difficult. A better
approach for improving the convergence of nonlinear FEA is to use a
ramped-up actuation force, as in case I, rather than allowing a large
actuation-force range to the optimizer.

From the optimization results, the required actuation forces were
found to be quite large. This may be undesirable, because consi-
derable actuation effort would be needed to produce the desired
motion. One way to address this issue is to consider the actuation
force in the objective. Future work may involve minimizing the cable
actuation force. Weight is an important consideration in the design of
amorphing aircraft wing. Future work may be directed toward using

weight as an objective function, with the element cross-sectional
areas as possible design variables. Additionally different ground
structures may be used to potentially achieve better results. A GA
parametric study may also be used to increase diversity of the GA
population.

Appendix A: Flow Diagram and Equations
for Nonlinear FEA

An iterative full Newton—Raphson procedure is used for
determining the state of force equilibrium. The flow diagram is
shown in Fig. Al.

As explained in Sec. IV, nonlinear FEA involves finding values of
nodal deflections such that Eq. (Al) is satisfied:

F-R=0 (A1)

At the start of the N-R procedure, an initial guess for U is made. The
following equations are used for calculation of the residual (F — R).
The first step involves calculation of strain. Green’s strain is used as a
strain measure. It is given by Eq. (A2):

2
e=op

(A2)

For a truss element, the longitudinal Green’s strain is given by
Eq. (A3):

g6 =blp+0.5b1p (A3)

For a three-dimensional element, the strain-displacement relation-
ships b, and b, are given by Eqs. (A4) and (A5):

1
bl) = (Ax)" (Ad)
0

1
b (p) = (4p)” (A5)
0

A is a matrix given by Eq. (A6):

1 =1 0 0 0 0
-1 1 0 0 0 0
1flo o 1 -1 0 0
A=Zl o 0o -1 1 o0 o (A6)
o o 0 o0 1 -1
0 0 0 0 -1 1

The second term in Eq. (A3) gives the nonlinear part of the strain.
Once Green'’s strain is calculated, the stress is calculated simply by
Eq. (AD):

o= FE¢gg (A7)

The principle of virtual work is used to find the internal forces g;. The
expression for g; is given by Eq. (A8) [12]:

q; = 2a9Aq0b (A8)

Here, b = b; + b, from Egs. (A4) and (AS). Equation (A8) gives the
internal nodal forces for a strut element. For an actuating element,

|Make an initial Prediction of UI

v
—{ Calculate Residual = F-R |

U for Force
Equilibrium

[ dU=K-"Residual |
v

— U=U+dU |

Fig. A1 The N-R procedure flow diagram.
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Eq. (A8) is used as before. However, instead of o, 0, is used. The
0, (stress due to actuation) is given in Eq. (A9):

Oact = Egact = CV (A9)

In calculating the strain due to actuation, the strain in the cable is
assumed to be proportional to the applied actuation V, and C is the
constant of proportionality. In Eq. (Al), F is g; due to o, and R is the
sum of aerodynamic loads and ¢; due to o,.. Once the residual has
been calculated, the next step (Fig. A1) is to determine dU in case the
residual is greater than the convergence criteria. This is calculated
using Eq. (A10):

dU = K~ x residual (A10)

The tangent stiffness matrix K corresponds to the geometric and
material conditions of the structure. It is given by Eq. (A11):

K =K, + Ko+ Ky, (Al1)

The expressions for the preceding stiffness terms are given in
Eqgs. (A12) and (A13):

Kt12 = Ktl + Kr2 = zanAobbT (AlZ)

_ 2A00
= o

K A (A13)

In the next step of the flow diagram shown in Fig. A1, U is updated by
Eq. (Al4):

U=U+dU (A14)

This process is iteratively repeated until convergence is achieved.
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